
A Comparison of Software Source Code Control Systems in Modern

Software Development

Sammy Robens-Paradise ID: 20709541

December 2, 2022

Systems Design Engineering, 2023
Department of Systems Design Engineering, University of Waterloo

Abstract – The concept of controlling and managing different concurrent versions of a product was not
invented by the software industry but was adopted from classical engineering fields which used specs and
version numbers allowing engineers to work on separate components of a larger project –such as a plane [1].
Software engineers quickly co-opted the usage of these systems into Source Code Control Systems (SCCS) to
store revisions between versions of source code on a centralized server, known as Centralized Version Control
Systems (CVCS), and then to Distributed Version Control Systems (DVCS). DVCS allow for changes to the
source code to remain locally on a developer’s computer, as opposed to on a centralized server. This report
compares the relative software development experience between the Centralized Version Control System,
Subversion (SVN) hosted on a private server, and Distributed Version Control System Git, hosted on GitHub
at PUMA Utility Monitoring (PUMA), a modern Canadian Software-As-A-Service company in Vancouver,
BC.

Keywords – Git, SVN, Distributed Version Control Systems, Centralized Versions Systems

I. SITUATION OF CONCERN & PROJECT OBJECTIVES

PUMA was interested in exploring new Source Code Control Systems (SCCS), and migrating from
a Centralized Version Control System (CVCS) to a Distributed Version Control System (DVCS) for three
reasons: 1) Before the addition of another Software Developer, the PUMA development team consisted of
two developers who focused on different application components. The introduction of a third developer
caused more code version conflicts. An increase from 10% to 30% over 480 hours of development across 3
developers in revisions with version and code conflicts (merge conflicts) was observed. 2), Developers using
PUMA’s current CVCS prior to migration did not discuss or review code changes before they were deployed
to PUMA’s development and production environment. This has been shown to increase the number of post-
release failures while using CVC Systems [2]. Lastly 3), the use of a distributed source control system may
provide more flexibility for developers by allowing them to apply commits (revisions) locally without sending
code changes to a remote server.

The comparison and migration from CVCS to DVCS affected three user classifications. Primary users,
were developers who were actively developing code for PUMA and directly used the Source Code Control
System. These users were required to maintain a working understanding of the SCCS so that they could
efficiently deploy code and collaborate on projects. Secondary users were product managers and owners who
did not directly interact with the SCCS but had ownership over the product the SCCS maintained. Tertiary
users were investors and external parties who were interested in promoting efficient development practices.

The objective of the project discussed in this report was to determine the most appropriate method of
migration from a CVCS to a DCVS. The Situation of concern was to determine from the standpoint of
primary users whether a migration from a centralized version control system to a distributed version control
system resulted in a more efficient software development life-cycle.

To make such a determination, one quantitative metric, and two qualitative metrics were evaluated.
The quantitative metric was the number of development minutes the development team spent working on

1

source Code Administration. This included resolving code conflicts, setting up development environments
and product deployment management. The data was collected from timetable billing records and SCCS logs
before and after migration. The qualitative metrics were the amount of frustration that primary users felt
during the source code migration and whether or not primary users felt that the migration from CVCS to
DVCS was beneficial to their workflow. This feedback was collected by conducting virtual meetings with
primary users before and after the migration.

These metrics were chosen to understand both the effect on development efficiency and the development
experience. The number of minutes of code administration was chosen over a more specific metric because
more specific metrics fluctuate drastically based on the feature or project the development team is working
on.

A number of assumptions were made when conducting the migration analysis. The first assumption was
that the development team would transition from their current development workflow, to what is commonly
referred to as the “Git workflow” with the DVCS Git and the code management platform GitHub. The
workflow prior to migration while using the CVCS Subversion (SVN) was what the Apache Working Group
refers to as the “Never-Branch-System” [3]. The “Never-Branch-System” works on the basis that developers
regularly commit their changes (save them to the remove server/repository) on a main branch, commonly
referred to in SVN as /trunk [3]. The benefits of this workflow are 1) “A low barrier to entry [for developers]”
since they do not need to understand or worry about multi-branching [3], and the simplicity of having the
most up-to-date code in one central branch. To deploy code, a single developer, with the role of deployment
controller would either merge the /trunk branch into a /production branch, or manually copy source files
over to a /production branch and commit code to the remote branch. (Figure 1).

Figure 1: PUMA Custom SVN CVCS Workflow [Image source: SRP, 2020]

The drawback of this approach are that if faulty code is committed, it is will break the code base blocking
ongoing development.

The Git workflow has been described by GitHub to consist of 6 components in its simplest form. [4] 1)
involves the creation of a branch from the current working copy of the code. On the created branch, referred

SRP/2020/V1.2 SYDE-BME Project-Based WKRPT # 200, Sammy Robens-Paradise Page 2

to as a feature-branch, developers make appropriate code changes. 2) Developers locally commit their code
changes on the feature-branch. 3) developers open a pull request against the main branch. 4) developers then
collaborate and discuss code changes on the pull request and decide if code can be merged into the main
branch in its current state. 5) GitHub provides the ability automatically deploy or run automated tests on
code on a specific branch. 6) the feature-branch is merged into the main branch if the pull request is approved
(Figure 2).

Figure 2: Proposed PUMA Git & GitHub DVCS Workflow [Image source: SRP, 2020]

The second assumption was that the three developers taking part in the project would not change their
coding habits. More simply put: if a developer wrote a component of source code in a particular way,
post-migration that developer tasked with constructing an identical component, would do it the same way.
Without making this assumption, it would be challenging to arrive at particular conclusion about the efficiency
resulting from a CVCS to DVCS migration. The third assumption is that there is at least one developer
with a working understanding of the DVCS Git participating in the migration–as was the case during this
migration.

SRP/2020/V1.2 SYDE-BME Project-Based WKRPT # 200, Sammy Robens-Paradise Page 3

II. ENGINEERING ANALYSIS

To determine the best method of migration three approaches were evaluated using a computational
decision matrix. The methods varied from instantaneous, to staggered migration of the SCCS from CVCS
to DVCS, where on one end, a complete migration of all of PUMA’s projects would occur at once, and
developers would immediately switch over from SVN to Git and GitHub. On the other end of the spectrum
each project would be individually migrated and setup on GitHub. In the center, was a clustering approach,
where a single—non-essential project would be migrated to GitHub and Git from SVN. Then the remaining
projects would be migrated in a cluster once the first project was stable. Each option was given a ranking on
a five-point scale of range [-2, +2] where 0 indicated that the impact was negligible, “+” indicated a positive
relationship and “-” indicated a negative relationship. Each metric was given a weight range [1,3] where 3
was of the most importance, and 1 the least. Weights were chosen relative to the most important factor
which was the risk to ongoing projects (Table 1).

Table 1: SVN to GitHub Computational Decision Matrix [Source: SRP, 2020]

Metric Low Complexity
of method execu-
tion.

Low Complexity
of code adminis-
tration.

Low Educational
Cost for develop-
ers.

High Risk to on-
going projects.

Results

Weight 1 2 2 3

Complete, one-
time migration
from CVCS to
DVCS

+2 +2 -2 -2 -4

Clustered migra-
tion from CVCS
to DVCS

+1 -1 +2 +1 +6

One-at-a-time
project migra-
tion from CVCS
to DVCS

-2 -2 +2 +2 +4

The weighting was multiplied by the relationship and a sum of each relative indicator was taken to
determine the best approach where the most desirable approach was the one with the highest score defined
by:

result =
∑

weight · relationship

Developers were also asked which of the three approaches they would prefer. There were three devel-
opers that would be impacted by the decision. Developer 1 was reluctant to undertake a SCCS migration
from CVCS to DVCS because they had become accustomed to a CVCS workflow (Figure 1) and feared they
would be less capable as a software developer post migration. They preferred a one-at-a-time migration as a
result. Developer 2 had previous experience using both CVCS and DVCS. While they felt more comfortable
using Git and GitHub (DVCS), they expressed little preference regarding the migration process. Developer
3 participating in the migration was a proponent of Git and GitHub because their preexisting experience
effectively using the DVCS and proposed a complete migration at once time.

Based on the qualitative feedback and input from the three developers, and the results gathered from the
SVN to Git and GitHub Computational Decision Matrix (Table 1), the “clustering” approach was chosen as
the best methodology to perform the migration from CVCS to DVCS because it allowed developers to migrate
over a non-essential application before migrating the remaining projects. Following this migration approach,
the application PUMA.Admin was chosen to migrate first because it is an internal-facing application and
had little ongoing development. Once PUMA.Admin was successfully migrated and was shown to be stable,

SRP/2020/V1.2 SYDE-BME Project-Based WKRPT # 200, Sammy Robens-Paradise Page 4

the rest of the project applications were migrated together in a cluster.
This approach caused minimal disruption to ongoing software development, low risk for user-facing prod-

ucts, a decreased opportunity for source code corruption, and a window for developers to explore Git and
GitHub before they were fully immersed in the DVCS.

Migrating a project from Subversion (SVN) to Git and GitHub had been done before but presented a
number of challenges that needed to be handled during the migration. Subversion (SVN) and Git and GitHub
store commit history differently, and Git stores more information with each commit. There are two significant
differences in the way information is stored between Subversion (SVN) and Git (Table 2) [5, 6, 7].

Table 2: SVN, Git & GitHub Comparison [Source: SRP, 2020]

Difference Branches Commits

Git and
GitHub

Git and GitHub enforce a strict branching
structure, where each branch contains a snap-
shot of an entire repository. This means that
a given branch, is simply just an instance
of a central repository that has been pulled
off of a main parent branch.[5] Changes to
the current branch are tracked by Git over
the entire repository, all within the same di-
rectory. This means that a developer can
switch branches, effectively changing develop-
ment contexts without leaving a repository
and/or directory.

Git captures information such as user emails
in each commit and does not need to store in
a linear model. For example, If a branch with
diverging code is merged into a main branch
such as master then Git will reapply changes
as commits to the master branch [5]. Git also
only stores change-sets between code commits,
giving it the ability to better determine and
automatically resolve merge conflicts between
two branches. Git commits also contain a hash
that can be thought of as a pointer to a specific
instance of the code on a branch, rather than
a particular copy of the code.

Subversion
(SVN)

SVN has a large degree of freedom in relation
to branching. It does not enforce any partic-
ular branch structure, and in fact, the idea of
branching in svn is more of an “agreed upon”
concept rather than a core feature of the SCCS
[7]. SVN tracks directories and files, rather
than branches. meaning a particular branch is
just a named directory in a central repository.
Furthermore, SVN will only apply changes to
the current directory.

SVN commits occur in linear order, mean-
ing code changes cannot be re-applied to a
base branch but are to be interpreted as re-
visions, which can be thought of as a snap-
shot of an entire file system and its files at a
particular moment in time. Since SVN does
not track code changes, merging one branch
into another simply means applying a partic-
ular snapshot of a file system to another file
system. This is much harder for SVN to rec-
oncile, and often results in vast amounts of
“merge conflicts”. SVN also does not store
author emails with each commit.

Git provides the command-line tool git-svn that allows “Bidirectional operation between a Subversion
repository and Git” that was used to automate the migration [8]. because Git and SVN store commit history
differently, git-svn works by recursively looping through an SVN repository’s commit history then each SVN
branch/directory and checking out each revision [8]. Each revision is then committed to a new Git repository
and matched to a Git branch. A shell script was written to automate this process shown below in simplified
form. It was executed for each software project that PUMA maintained:

#!/bin/sh

get URL, directory path, and username as user input

checkout svn repository

svn checkout $url

[-d migration] mkdir migration

cd "$name"

make user file to match emails to usernames

SRP/2020/V1.2 SYDE-BME Project-Based WKRPT # 200, Sammy Robens-Paradise Page 5

touch users.txt

svn log --xml --quiet | grep author | sort -u |

perl -pe ’s/.*>(.*?)<.*/$1 = /’ >users.txt

read -p

make changes to file and match username to emails

vi users.txt

clone and recursively apply commits to Git repository

git svn clone $url --authors-file=users.txt --no-metadata --prefix "" -s ../migration/$name

cd ../migration/$name

cleanup branch names and tags

for t in $(Git for-each-ref --format=’%(refname:short)’ refs/remotes/tags); do Git tag

${t/tags\//} $t && Git branch -D -r $t; done

for b in $(Git for-each-ref --format=’%(refname:short)’ refs/remotes); do Git branch $b

refs/remotes/$b && Git branch -D -r $b; done

for p in $(Git for-each-ref --format=’%(refname:short)’ | grep @); do Git branch -D $p; done

Git branch -d trunk

finish

Done

The process could not be fully automated because Git stores a user’s email and SVN does not. Thus, a
relationship between a user’s name in SVN and an email had to be defined. This was done in a text file
automatically generated by the Shell script, however an email associated with each user who committed
to the SVN repository had to be manually entered. The complete analysis process and migration design
involved four steps. The first being the collection of qualitative feedback from primary users as well as
the collection of a qualitative metric: source Code Administration in tabular format by day and developer.
Two, the first project was migrated over to Git and GitHub from SVN and was connected to a continuous
deployment pipeline. Three, the remaining projects were migrated in a cluster from SVN to Git and GitHub
and connected to a continuous deployment pipeline. Step four, qualitative and quantitative data was (once
again) collected and the results were analyzed.

III. RESULTS

The following tables outline the results that were collected before and after the design change from a
CVCS SVN server to a DVCS Git version control system hosted and maintained by GitHub:

Figure 3: Pre-Migration SVN Code Administration [Image source: SRP, 2020]

SRP/2020/V1.2 SYDE-BME Project-Based WKRPT # 200, Sammy Robens-Paradise Page 6

Figure 4: Pre-Migration SVN Code Administration Trend [Image source: SRP, 2020]

Figure 5: Post-Migration Git Code Administration Minutes Chart [Image source: SRP, 2020]

Figure 6: Post-Migration Git Code Administration Minutes Trend [Image source: SRP, 2020]

In comparing the Code Administration metric it was observed that on average the number of Code Admin-
istration minutes decreased between the pre—and post-migration from SVN to Git. Previously the average
time spent interacting with the SCCS was 368 minutes per 40-hour work week relative to the time spent
interacting with the SCCS post migration, which was 215 minutes, therefore a decrease of 42% in time spent.
Additionally the average slope of trend for the number of minutes spent conducting code administration us-
ing CVCS was -2.71, relative to the average slope of trend for the number of minutes spent conducting code
administration using DVCS which was -20.3. Quantitative results above are supplemented by two qualitative
metric results summarized in Table 3:

SRP/2020/V1.2 SYDE-BME Project-Based WKRPT # 200, Sammy Robens-Paradise Page 7

Table 3: Qualitative User Feedback Pre, and Post Migration from. CVCS to DVCS [Source: SRP, 2020]

Metric CVCS Pre Migration
Feedback

During Migration
Feedback

DVCS Post Migration
Feedback

Question Is the current SSCS sys-
tem beneficial to your
workflow?

Do you feel frustrated
with the migration from a
CVCS to a DVCS?

Is the current SSCS sys-
tem beneficial to your
workflow?

Developer 1: No
Experience with
Git

No Opinion. [They] feel as
though it is beneficial be-
cause it is what is comfort-
able

No. But overwhelmed by
transition and [the] need
to learn new technology.

Speculative Yes. Stated
that they continue to feel
more comfortable with
each system interaction.

Developer 2: Expe-
rience with Git

No. Recognized that
when working with mul-
tiple developers probabil-
ity of merge conflicts in-
creases.

No. Worried about the
ability of other developers
to maintain their workflow
post migration to DVCS.

Yes. User believes that
DVCS brings added bene-
fit to a collaborative code
workflow.

Developer 3: Expe-
rience with Git

No. Feels as though
CVCS is not beneficial to
workflow

No. Worried about the
ability of other developers
to maintain their workflow
post migration to DVCS.

Yes. Satisfied with the
ability that [the] Git Flow
provides to collaborate
with other developers.

IV. DISCUSSION

Data collected before, and after migration from a CVCS to a DVCS showed a decrease in the average
number of minutes developers spent conducting code administration. Furthermore, the average trend of code
administration post-migration was about approximately 7.5 times smaller. The post-migration data was
collected in a 40-hour work week immediately following the migration. Using multiple trace theory which
implies that humans will improve at a task the more they perform it, it may be induced that as developers
continue to use Git their task recall will improve and so will their efficiency [9]. As a result, the data collected
indicate that a migration from CVCS using Subversion (SVN) to a DVCS based on Git and GitHub using
the standard GitHub Workflow (Figure 2) may have a causal link to a decrease in time spent conducting
code administration tasks for the PUMA team resulting in a more effective development experience.

This observation could be explained for two reasons: The first pertains to the development environment.
Under the CVCS SVN model, directories are treated as ”branches”. This means that for each branch, a devel-
oper needed to instantiate a development environment. This includes adjusting operating system permissions,
adding configuration files and configuring Internet Information Services (IIS) for local development. This can
take a significant amount of time. It was also the reason why the development team at PUMA adhered to
the “Never-Branch-System” which had its own drawbacks [3]. Under the DVCS Git model, developers could
change branches from within one directory and development environment, completely eliminating the need
to setup a development environment for each branch. This saved a substantial amount of time. The second
possible explanation relates to the difference in the way SVN and Git handle merge conflicts. SVN attempts
to reconcile an entire line-by-line file change, causing often “erroneous” merge conflicts such as a change in
white-space. This meant that developers spent valuable time resolving mundane merge conflicts. Git on
the other hand, tracks change-sets (Table 2). This meant that developers needed only intervene when there
were significant or substantiated merge conflicts such as the change of a code path. This greatly reduced the
amount of time developers spent on code administration tasks.

Another interesting observation is that Developer 1 stated they were still not completely comfortable with
the DVCS model post-migration. This can be observed in Figure 6, where on the first day of the data collec-
tion week Developer 1 spent 221 minutes (49%) of their 450 minute workday handling code administration
tasks. As they got more comfortable however, this daily number quickly decreased later in the data collection
period (Figure 5 and Figure 6).

SRP/2020/V1.2 SYDE-BME Project-Based WKRPT # 200, Sammy Robens-Paradise Page 8

V. LIMITATIONS OF METHODS USED

Because the developers participating in the migration took on multiple roles during the software devel-
opment life-cycle, it was hard to get a precise picture of the amount of time that developers truly spent
conducing code administration in the average week, since each week was somewhat different. The conse-
quence of this is that it was challenging to conduct a true comparative analysis from before and after the
migration from a CVCS to a DVCS because no development week is exactly the same. This could cause
skewed results meaning that while the conclusion may be accurate for a particular development week, it
cannot be generalized to the entire software development life-cycle. While qualitative assessment of primary
users provided some mitigation, it is not a substitute for quantitative results. Another limitation on the
methods used is the presence of implicit bias in the analysis. It must be noted that the author proposed a
CVCS (SVN) to DVCS (Git) migration, participated in the migration (Developer 3) as well as analyzed and
collected qualitative and quantitative data concerning the migration. Because analysis was conducted by a
participant, implicit bias must be considered in the report.

VI. CONCLUSIONS

Based on qualitative and quantitative data collected, the average time developers 1,2 and 3, spent
conducting code administration decreased by 42% pre, versus post migration from a CVCS to a DVCS.
This indicated that the usage of the DVCS Git over the CVCS SVN may result in a more efficient software
development life cycle across PUMA’s projects because developers were able to spend more time writing code,
than managing it. It can also be concluded that while there was a negative trend in time spent conducting
code administration, the efficiency of developers with an SCCS is influenced heavily by their conceptual
understanding of the logic and methodology behind the given version control system, as well as the amount
of time developers have spent interacting with the SCCS.

VII. RECOMMENDATIONS

Recommendation: Software development teams with more than two developers working on Unicode-based
languages and currently using SVN as their SCCS should consider use the clustering approach discussed in
this report to migrate to Git and GitHub.
Rationale: Qualitative and quantitative analysis conducted as part of this report indicates that Git provides
resources linked to an increase in effectiveness of the software development life-cycle.
Costs: With the assumption that there is at least one developer with a working understanding of DVCS and
the skill set to perform migrations, it is estimated, based on the timelines observed during this migration that
it would take a single developer approximately 60 developer-hours to conduct project migrations using the
”clustering migration” approach using an automated script. Ideally, it would take two capable developers 30
hours each to conduct the same migration. Using the median hourly rate of software developers in Canada of
$25.01 CAD/Hour in 2020 [10], and the GitHub’s current price-per-user/month of $ 4.00 (September 2020),
an estimated cost would be calculated by:

$cost ≈ $25.01 · (60 + hoursadditional) + $4 · numberdevelopers · nmonths

Benefits: There are two reasons why teams should undergo a migration from SVN to Git. First, Git has
been shown to produce less merge conflicts, and the ability to locally commit code as well as collaborate on
“pull requests” was qualitatively linked to a more desirable development experience. Secondly, assuming the
average hourly rate for a software developer in Canada to be $25.01 CAD/Hour [10], developers would save
a median of 51 minutes of development time per week based on the data collected from PUMA’s migration.
This translates to annual ideal savings of $1065 CAD/year, compared to the relative average cost of Git,
GitHub and the migration at $508 CAD/year. This can be thought of as additional 22 hours of development
time per developer per year. For developers earning more, savings would increase since the cost of GitHub

SRP/2020/V1.2 SYDE-BME Project-Based WKRPT # 200, Sammy Robens-Paradise Page 9

is independent of a developer’s salary.

ACKNOWLEDGMENTS

Thank you to Rob Kraft, P. Eng., MASc. President of PUMA, Elina Poversky, Sr. Computer Scientist
at PUMA and Stephen Leong, Developer at Bayleaf Software for participating in countless interviews, project
meetings, and the many hours dedicated to source control project planning.

References

[1] W. Carstensen and W. Carstensen, ”A brief history of version control - Redgate Software”, Redgate
Software, 2016. [Online]. Available: https://www.red-gate.com/blog/database-devops/history-of-version-
control. [Accessed: 13- Sep- 2020].

[2] Albert Einstein. C. Bird, N. Nagappan, P. Devanbu, H. Gall and B. Murphy, ”Does distributed devel-
opment affect software quality?”,Communications of the ACM, vol. 52, no. 8, pp. 85-93, 2009. Available:
10.1145/1536616.1536639.

[3] ”Subversion Best Practices”, Svn.apache.org, 2017. [Online]. Available:
https://svn.apache.org/repos/asf/subversion/trunk/doc/user/svn-best-practices.html. [Accessed: 13-
Sep- 2020].

[4] ”Understanding the GitHub flow · GitHub Guides”, Guides.github.com, 2020. [Online]. Available:
https://guides.Github.com/introduction/flow/. [Accessed: 13- Sep- 2020].

[5] ”Git vs. SVN – What Is The Difference? — Perforce Software”, Perforce Software, 2020. [Online].
Available: https://www.perforce.com/blog/vcs/Git-vs-svn-what-difference. [Accessed: 13- Sep- 2020].

[6] B. Collins-Sussman, B. Fitzpatrick and M. Pilato, ”Examining History”, Svn.gnu.org.ua, 2006. [Online].
Available: http://svn.gnu.org.ua/svnbook/svn.tour.history.html. [Accessed: 13- Sep- 2020].

[7] B. O’Sullivan, ”Making Sense of Revision-control Systems”, Dl.acm.org, 2020. [Online]. Available:
https://dl.acm.org/doi/pdf/10.1145/1594204.1595636. [Accessed: 13- Sep- 2020].

[8] S. Chacon and J. Long, ”Git - Reference”, Git-scm.com, 2020. [Online]. Available: https://Git-
scm.com/docs/Git-svn. [Accessed: 13- Sep- 2020].

[9] M. Moscovitch et al., ”Functional neuroanatomy of remote episodic, semantic and spatial memory: a
unified account based on multiple trace theory”, Journal of Anatomy, vol. 207, no. 1, pp. 35-66, 2005.
Available: 10.1111/j.1469-7580.2005.00421.x.

[10] ”Software Developer Salary in Canada — PayScale”, Payscale.com, 2020. [Online]. Available:
https://www.payscale.com/research/CA/Job=Software Developer/Salary. [Accessed: 13- Sep- 2020].

Images, tables and graphs presented in this document created by the authors are indicated by author
initials and the year of creation.

SRP/2020/V1.2 SYDE-BME Project-Based WKRPT # 200, Sammy Robens-Paradise Page 10

